Home > Research > Seminars > Content

Seminars

Extensions of accessibility measures via multi-state supernetworks-Prof.Feixiong Liao's Lecture Notice

Publish Date: 2018/07/14 14:33:19    Hits:

Time:2018.7.15 10:00-11:30

Location:A716

Abstract:

Space-time prism (STP) is a fundamental concept in time geography. Despite many variants, STPs have been mostly modeled for one flexible activity between two anchor points. This study proposes a systemic approach to construct the STP bounds of activity programs that usually include various possible realizations of activity chains. To that effect, multi-state supernetworks are applied to represent the relevant path sets of multi-activity travel patterns. A goal-directed search method in multi-state supernetworks is developed to delineate the potential space–time path areas satisfying the space–time constraints. Particularly, the approximate lower and upper STP bounds are obtained by manipulating the goal-directed search procedure utilizing landmark-based triangular inequalities and spatial characteristics. The suggested approach can in an efficient fashion find the activity state dependent bounds of STP and potential path area.

About the presenter:

Feixiong Liao is an assistant professor (tenured) at the Urban Planning Group of Eindhoven University of Technology (TU/e). His fields of expertise include urban planning and transport studies. He received his Ph.D. from TU/e 2013. During his Ph.D. studies, he worked with a large consortium to examine how accessibility in the Netherlands' Randstad region can be improved by implementing synchronization strategies. After completing his Ph.D., he became a post-doc researcher in the same group, conducting research on travel behavior modeling and dynamic activity-travel assignment. In collaboration with Beihang University, the post-doc research attempted to solve a vital shortcoming of the existing travel demand forecasting systems by coupling activity-based modeling and dynamic traffic assignment in the multi-state supernetworks. His current research activities are focused on the developments of a large-scale model system of urban transportation planning.